Promoting Routability Routing for the Internet APRICOT 2001 Tutorial – Kuala Lumpur 26th February 2001

Introduction

• Presenter:

Philip Smith, Consulting Engineer Office of the CTO, Cisco Systems e-mail: pfs@cisco.com

Please ask questions

Routing Terms and Concepts

Introduction to IGPs

BGP for ISPs

Routing Design for ISPs

Routing Etiquette and the IRR

Promoting a healthy Internet

- Efficient and Effective Routing Configuration
- Internet Routing Registry
 - awareness
 - understanding
 - participation

Routing Terms and Concepts

What does it all mean?

APRICOT 2001 © 2001, Cisco Systems, Inc.

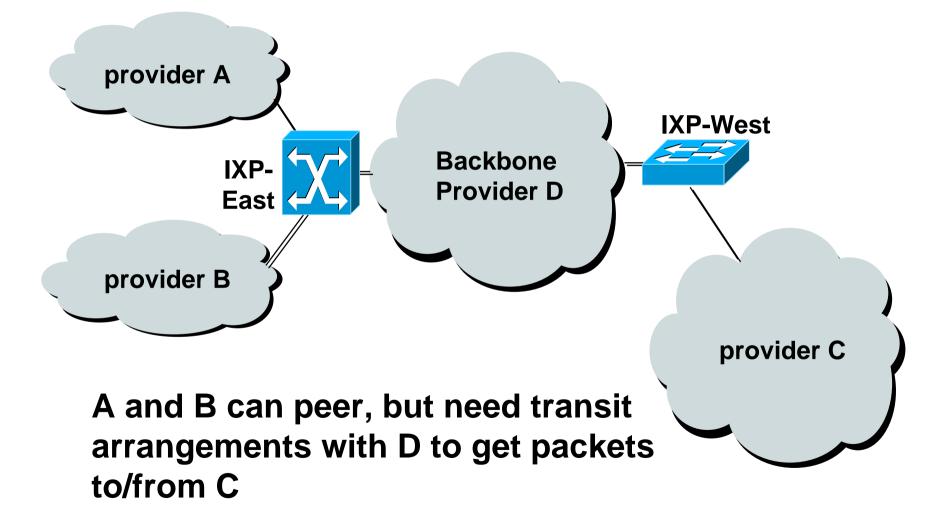
Network Topologies

Routed backbone

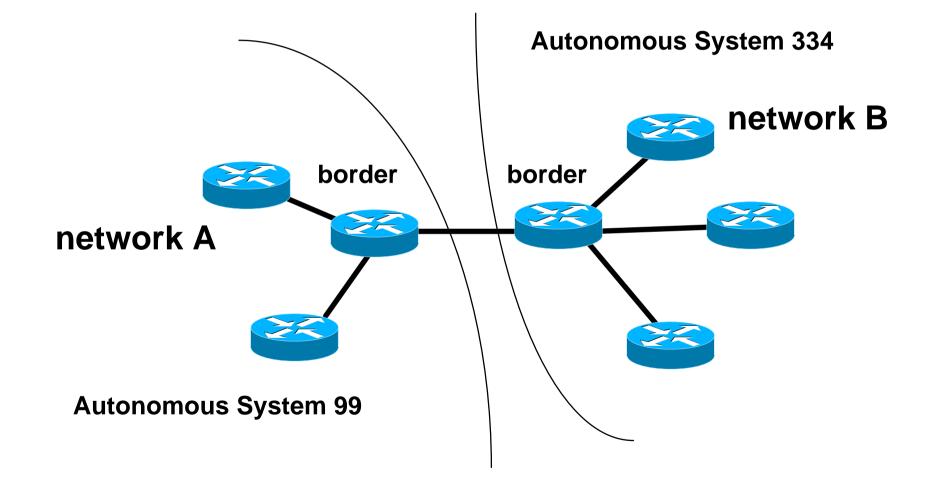
- HDLC or PPP links between routers
- Easier routing configuration and debugging

Switched backbone

- Frame Relay/ATM switches in core
- Surrounded by routers
- Complex routing & debugging
- Traffic Engineering


PoP Topologies

- Core routers high speed trunk connections
- Distribution routers and Access routers high port density
- Border routers connections to other AS's
- Service routers hosting and servers
- Some functions might be handled by a single router


Transit, Peering and Default

- Transit carrying traffic across a network, usually for a fee
- Peering exchanging routing information and traffic
- **Default** where to send traffic when there is no explicit match is in the routing table

Peering and Transit example

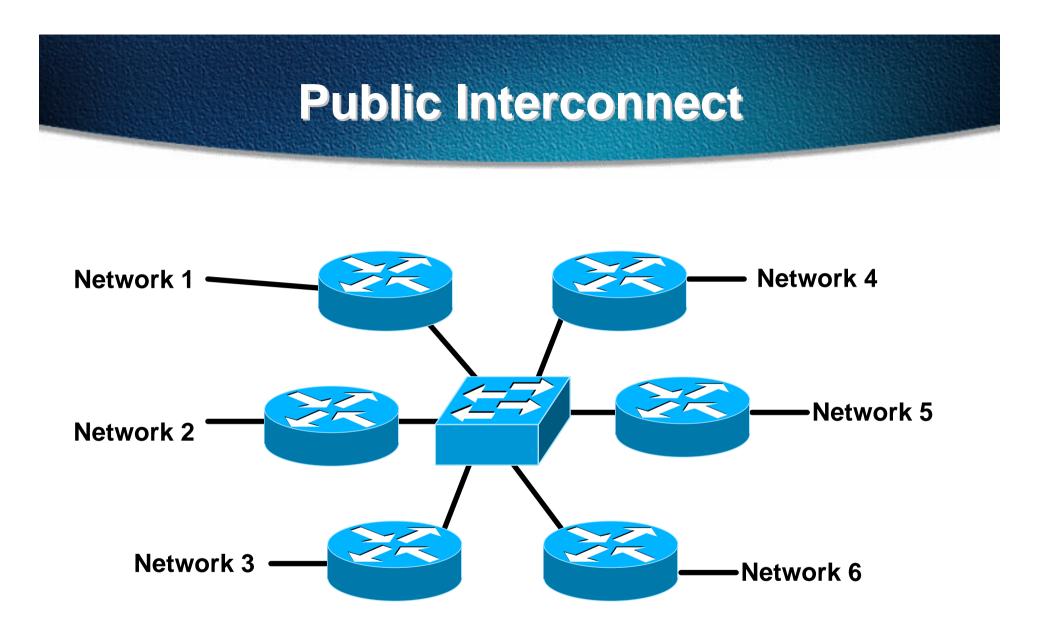
Public Interconnect Points

- IXP Internet eXchange Point
- NAP Network Access Point
- local IXPs

peering point for a group of local/regional providers

transit IXPs

connects local providers to backbone (transit) providers


hybrid IXPs

combines the function of local and transit

Public Interconnect Point

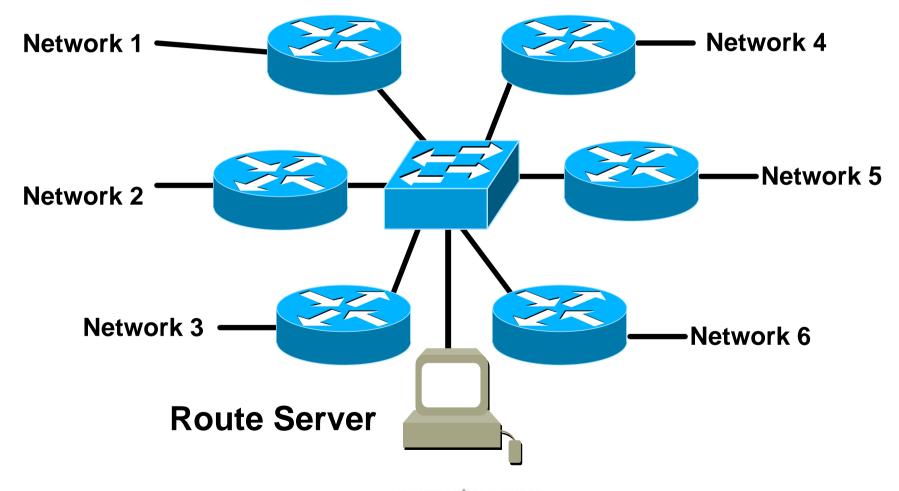
- Centralised (in one facility)
- Distributed (connected via WAN links)
- Shared, switched or routed interconnect Router, FDDI, Ethernet, ATM, Frame relay, SMDS, etc.
- Each provider establishes relationship with other provider at IXP

ISP border router peers with all other provider border routers

each of these represents a border router in a different autonomous system

Route Server

- Device which maintains BGP routing table at IXP and forwards it to IXP participants
- Advantages:

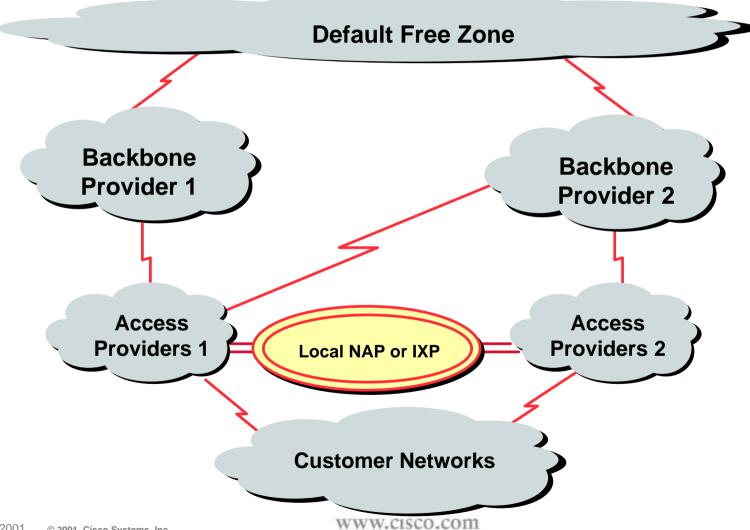

reduces resource burden on border routers (CPU, memory, configuration complexity)

reduces administrative burden on providers

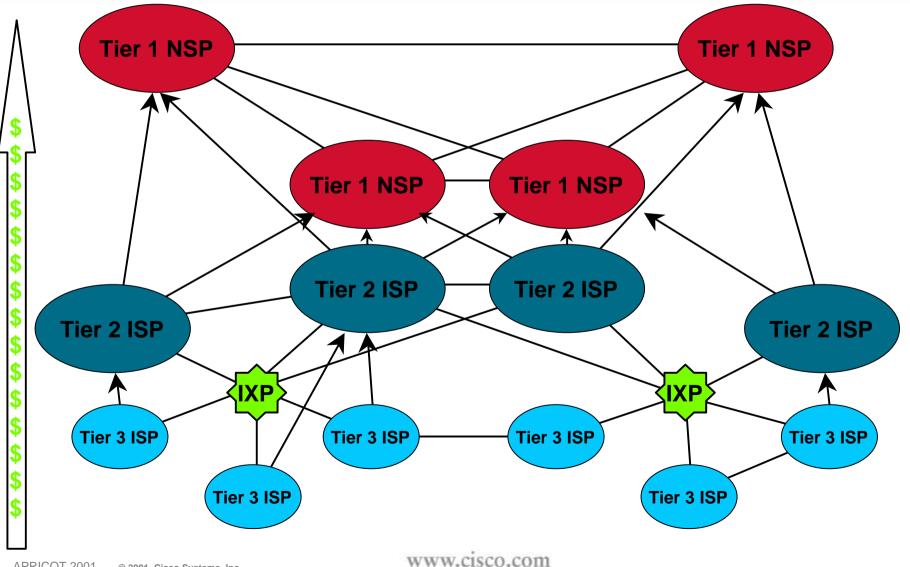
• Disadvantages:

must rely on a third party (for management, configuration, software updates, maintenance, etc)

Route Server


Internet Hierarchy

The pecking order


Default Free Zone

The default free zone is made up of Internet routers which have explicit routing information about the rest of the Internet, and therefore do not need to use a default route.

High Level View of the Global Internet

Categorising ISPs

Inter-provider relationships

 Peering between equivalent sizes of service providers (e.g. Tier 2 to Tier 2)

shared cost private interconnection, equal traffic flows

"no cost peering"

• Peering across exchange points

if convenient, of mutual benefit, technically feasible

Fee based peering

unequal traffic flows, "market position"

IP Addressing and Autonomous Systems Where to get address space, ASNs, and who from?

IP Addressing

- Internet is classless
- Concept of Class A, class B or class C is no more

engineers talk in terms of prefix length, for example the class B 158.43 is now called 158.43/16.

• All routers must be CIDR capable

Classless Inter**Domain Routing**

RFC1812 - Router Requirements

IP Addressing

• Pre-CIDR (<1994)

big networks got a class A medium networks got a class B small networks got a class C

Nowadays

allocations/assignments made according to demonstrated need - CLASSLESS

IP Addressing

 IPv4 Address space is a resource shared amongst all Internet users

Regional Internet Registries delegated allocation responsibility by the IANA

APNIC, ARIN, RIPE NCC are the three RIRs

RIRs allocate address space to ISPs and Local Internet Registries

ISPs/LIRs assign address space to end customers or other ISPs

• 51% of available IPv4 address space used

Definitions

Non-portable - 'provider aggregatable' (PA)

Customer uses RIR member's address space while connected to Internet

Customer has to renumber to change ISP

Aids control of size of Internet routing table


May fragment provider block when multihoming

 PA space is allocated to the RIR member with the requirement that all assignments are announced as an aggregate

Definitions

 Portable - 'provider independent' (PI)
 Customer gets or has address space independent of ISP
 Customer keeps addresses when changing ISP
 Bad for size of Internet routing table
 PI space is rarely distributed by the RIRs

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- AS number obtained from RIR or upstream ISP

Routing Concepts Routing, Forwarding and Routing Protocols

Routing versus Forwarding

- Routing = building maps and giving directions
- Forwarding = moving packets between interfaces according to the "directions"

IP Routing - finding the path

- Path derived from information received from a routing protocol
- Several alternative paths may exist best next hop stored in forwarding table
- Decisions are updated periodically or as topology changes (event driven)
- Decisions are based on:

topology, policies and metrics (hop count, filtering, delay, bandwidth, etc.)

IP route lookup

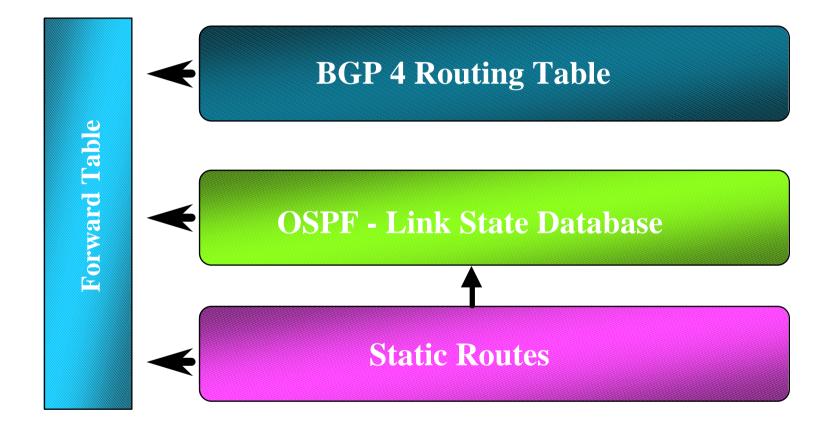
- Based on destination IP packet
- "longest match" routing

more specific prefix preferred over less specific prefix

example: packet with destination of 10.1.1.1/32 is sent to the router announcing 10.1/16 rather than the router announcing 10/8.

IP Forwarding

- Router makes decision on which interface a packet is sent to
- Forwarding table populated by routing process
- Forwarding decisions:


destination address

class of service (fair queuing, precedence, others)

local requirements (packet filtering)

Can be aided by special hardware

Routing Tables Feed the Forwarding Table

Explicit versus Default routing

• Default:

simple, cheap (cycles, memory, bandwidth) low granularity (metric games)

Explicit (default free zone)

high overhead, complex, high cost, high granularity

Hybrid

minimise overhead

provide useful granularity

requires some filtering knowledge

Egress Traffic

- How packets leave your network
- Egress traffic depends on:

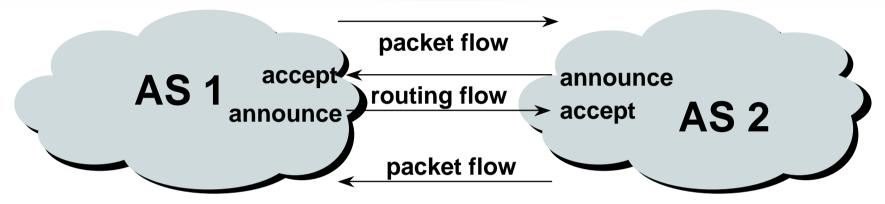
route availability (what others send you)

route acceptance (what you accept from others)

policy and tuning (what you do with routes from others)

Peering and transit agreements

APRICOT 2001 © 2001, Cisco Systems, Inc.


Ingress Traffic

- How packets get to your network and your customers' networks
- Ingress traffic depends on:
 - what information you send and to whom

based on your addressing and AS's

based on others' policy (what they accept from you and what they do with it)

Routing flow and packet flow

For networks in AS1 and AS2 to communicate:

AS1 must announce to AS2

AS2 must accept from AS1

AS2 must announce to AS1

AS1 must accept from AS2

Traffic flow is always in the opposite direction of the flow of routing information

APRICOT 2001 © 2001, Cisco Systems, Inc.

What Is an IGP?

- Interior Gateway Protocol
- Within an Autonomous System
- Carries information about internal prefixes
- Examples OSPF, ISIS, EIGRP...

What Is an EGP?

- Exterior Gateway Protocol
- Used to convey routing information between Autonomous Systems
- De-coupled from the IGP
- Current EGP is BGP4

Why Do We Need an EGP?

 Scaling to large network Hierarchy

Limit scope of failure

Policy

Control reachability to prefixes

Merge separate organizations

Connect multiple IGPs

Interior versus Exterior Routing Protocols

Interior

- automatic neighbour discovery
- generally trust your IGP routers
- routes go to all IGP routers

binds routers in one AS together

Exterior

specifically configured peers

connecting with outside networks

set administrative boundaries

binds AS's together

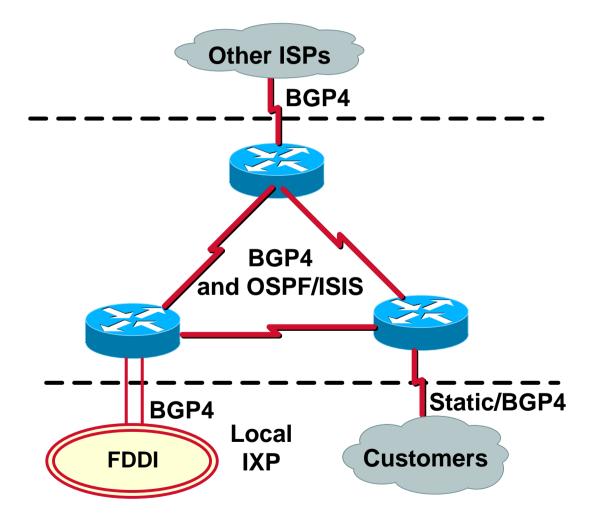
www.cisco.com

Interior versus Exterior Routing Protocols

Interior

Carries ISP infrastructure addresses only

ISPs aim to keep the IGP small for efficiency and scalability


Exterior

Carries customer prefixes

Carries Internet prefixes

EGPs are independent of ISP network topology

Hierarchy of Routing Protocols

www.cisco.com

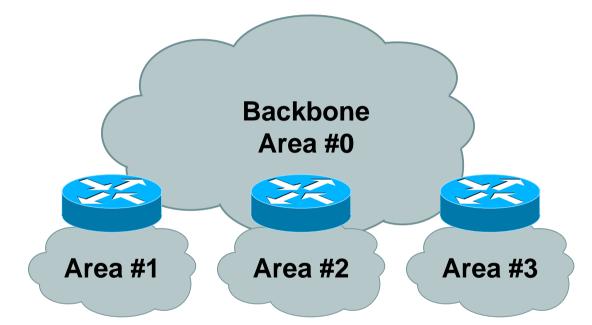
Introduction to IGPs

OSPF and ISIS

www.cisco.com

ISIS - Intermediate System to Intermediate System

- Link State Routing Protocol
- OSI development now continued in IETF
- Supports VLSM
- Low bandwidth requirements
- Supports two levels


The backbone (level 2) and areas (level 1)

Route summarisation

OSPF - Open Shortest Path First

- Link State Routing Protocol
- Designed by IETF for TCP/IP RFC2328
- Supports VLSM
- Low bandwidth requirements
- Supports different types of areas
- Route summarisation and authentication

Why Areas - OSPF Example

Topology of an area is invisible from outside of the area

Results in marked reduction in routing traffic

APRICOT 2001 © 2001, Cisco Systems, Inc.

Scalable Network Design

ISIS

Implement level1 - level 2/level 1 hierarchy for large networks only

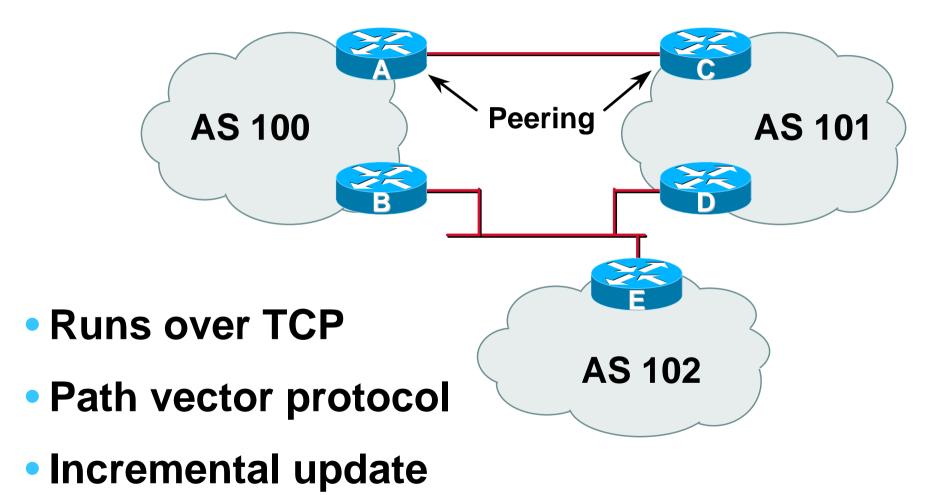
Internet friendly enhanced features

OSPF

Implement area hierarchy

Enforces good network design

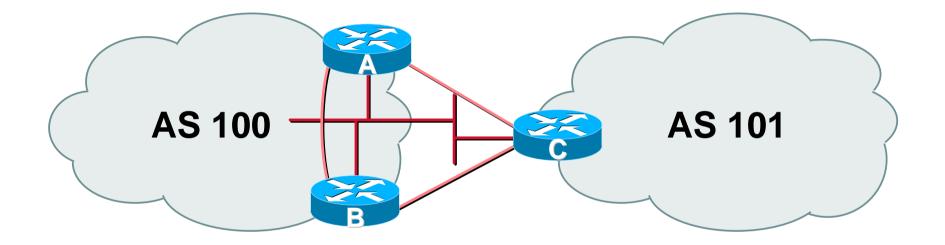
- Requires Addressing Plan
- Implement Route Summarisation


BGP Terminology

What is it?

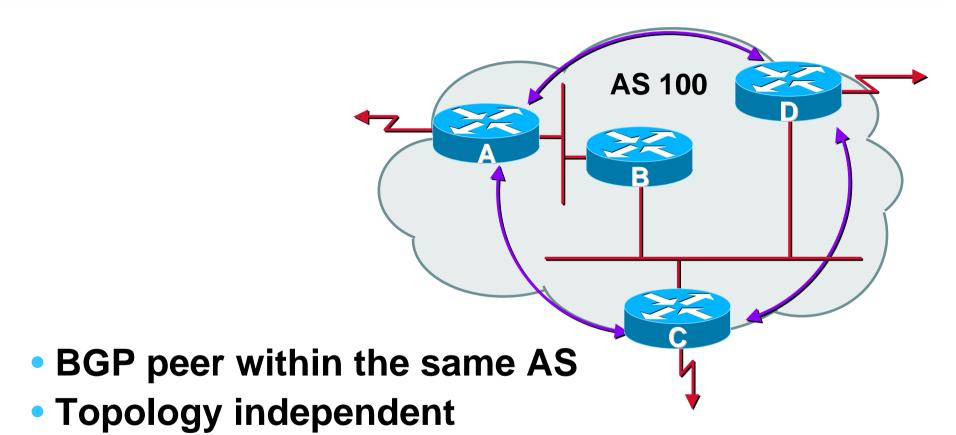
APRICOT 2001 © 2001, Cisco Systems, Inc.

www.cisco.com



BGP General Operation

- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs in the IP forwarding table
- Policies applied by influencing the best path selection



- Between BGP speakers in different AS
- Should be directly connected

www.cisco.com

Internal BGP Peering (iBGP)

 Each iBGP speaker must peer with every other iBGP speaker in the AS

Stable iBGP peering - loopback interface

• Peer with loopback interface iBGP session should not be dependent on a physical interface

BGP Attributes

Describes characteristics of a prefix

• Some BGP attributes:

AS path, Next hop, Local preference, Multi-Exit Discriminator (MED), Origin, Aggregator and Community.

Some are mandatory, some are transitive

BGP Path Selection Algorithm

- Do not consider path if no route to next hop
- Highest local preference (global within AS)
- Shortest AS path
- Lowest origin code
 IGP < EGP < incomplete

BGP Path Selection Algorithm (continued)

Multi-Exit Discriminator

Considered only if paths are from the same AS

- Prefer eBGP path over iBGP path
- Path with shortest next-hop metric wins

Lowest router-id

BGP in ISP Backbones

- All routers take part in BGP
- BGP are used to carry

some or all of the Internet routing table customer prefixes

 IGPs are used to carry next hop and internal network information

recursive route lookup

 Routes are never redistributed from BGP into the IGP or from the IGP into BGP

Scaling Techniques

Bigger better networks!

Scaling Techniques

 Administrative scaling (BGP Communities)

Router resource scaling

Route Reflectors

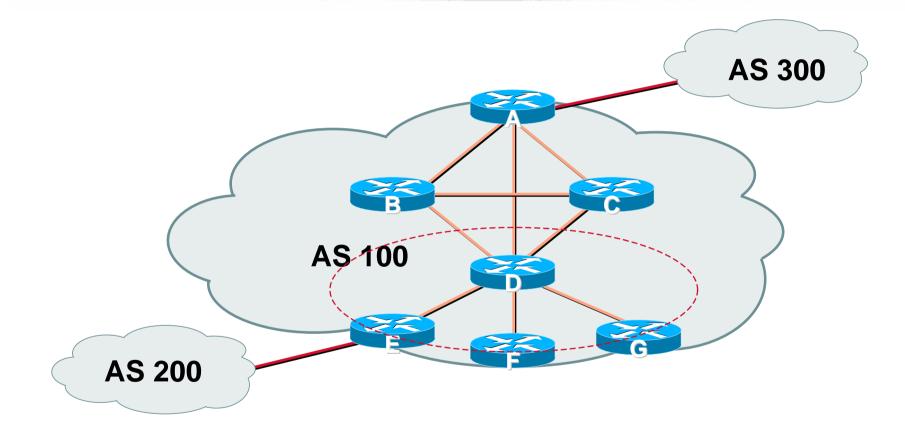
(Confederations)

Route Flap Damping

Dynamic Reconfiguration

Route Reflector

- Clients Scalable alternative to full **iBGP** mesh **Reflector receives path from** clients and non-clients Reflectors Selects best path Best path is from client—reflect to non-clients Best path is from non-client—reflect to clients **AS 100**
 - Non-meshed clients


Route Reflector

- Divide the backbone into multiple clusters (hint - build on OSPF/ISIS areas)
- At least one route reflector and few clients per cluster
- Route reflectors are fully meshed
- Clients in a cluster could be fully meshed
- Single IGP to carry next hop and local routes

Route Reflector: Benefits

- Solves iBGP mesh problem
- Packet forwarding is not affected
- Normal BGP speakers co-exist
- Multiple reflectors for redundancy
- Easy migration
- Multiple levels of route reflectors

Route Reflector: Migration

Migrate small parts of the network, one part at a time.

www.cisco.com

Route Flap Damping

Stabilising the Network

Route Flap Damping

Route flap

Going up and down of path or change in attribute BGP WITHDRAW followed by UPDATE = 1 flap eBGP neighbour going down/up is NOT a flap Ripples through the entire Internet Wastes CPU

 Damping aims to reduce scope of route flap propagation

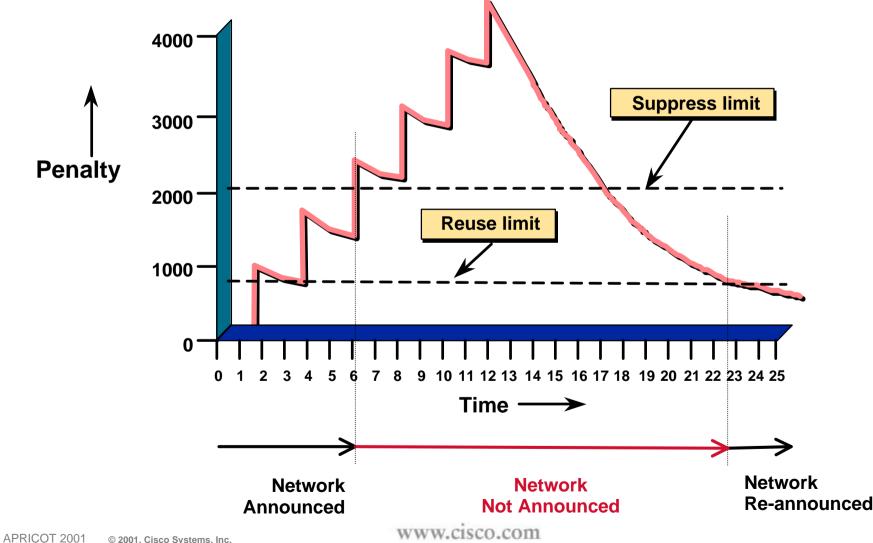
Route Flap Damping (Continued)

Requirements

Fast convergence for normal route changes

History predicts future behaviour

Suppress oscillating routes


Advertise stable routes

Implementation described in RFC2439

Route Flap Damping Operation

- Add penalty (1000) for each flap
- Exponentially decay penalty half life determines decay rate
- Penalty above suppress-limit do not advertise route to BGP peers
- Penalty decayed below reuse-limit re-advertise route to BGP peers

Route Flap Damping

Route Flap Damping Operation

- Only applied to inbound announcements from eBGP peers
- Alternate paths still usable
- In Cisco IOS, controlled by:

Half-life (default 15 minutes)

reuse-limit (default 750)

suppress-limit (default 2000)

maximum suppress time (default 30 minutes)

Route Flap Damping Configuration

Examples - ×

bgp dampening 30 750 3000 60

reuse-limit of 750 means maximum possible penalty is 3000 - no prefixes suppressed as penalty cannot exceed suppress-limit

Examples -

bgp dampening 30 2000 3000 60

reuse-limit of 2000 means maximum possible penalty is 8000 - suppress limit is easily reached

Flap Dampening: Enhancements

 Selective dampening based on AS-path, Community, Prefix

Variable dampening

recommendations for ISPs

http://www.ripe.net/docs/ripe-210.html

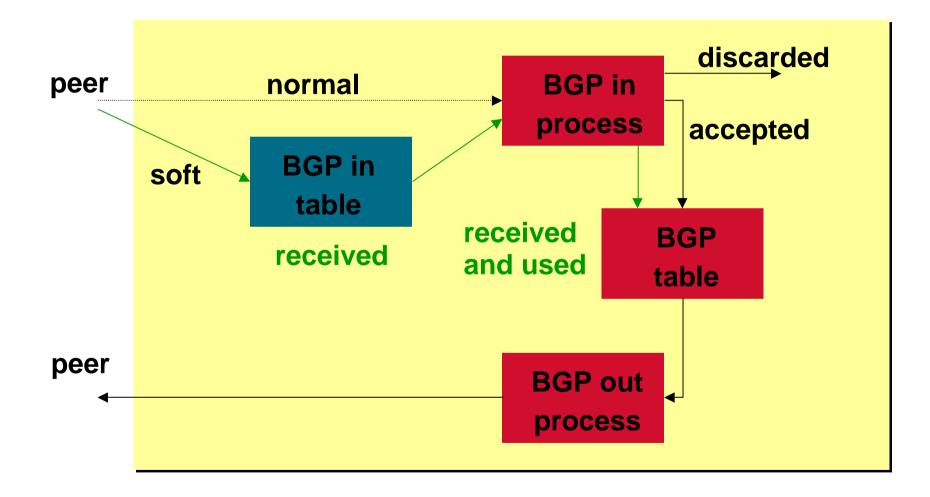
Flap statistics in Cisco IOS

show ip bgp neighbor <x.x.x.x> [dampened-routes
flap-statistics]

Dynamic Reconfiguration

Soft Reconfiguration and Route Refresh

Soft Reconfiguration


Problem:

- Hard BGP peer clear required after every policy change because the router does not store prefixes that are denied by a filter
- Hard BGP peer clearing consumes CPU and affects connectivity for all networks

Solution:

Soft-reconfiguration

Soft Reconfiguration

Soft Reconfiguration

- New policy is activated without tearing down and restarting the peering session
- Per-neighbour basis
- Use more memory to keep prefixes whose attributes have been changed or have not been accepted

Configuring Soft reconfiguration

router bgp 100

neighbor 1.1.1.1 remote-as 101

neighbor 1.1.1.1 route-map infilter in

neighbor 1.1.1.1 soft-reconfiguration inbound

! Outbound does not need to be configured !

Then when we change the policy, we issue an exec command

```
clear ip bgp 1.1.1.1 soft [in | out]
```

Route Refresh Capability

- Facilitates non-disruptive policy changes
- No configuration is needed
- No additional memory is used
- Requires peering routers to support "route refresh capability" - RFC2842
- clear ip bgp x.x.x.x in tells peer to resend full BGP announcement

Soft Reconfiguration vs Route Refresh

- Use Route Refresh capability if supported find out from "show ip bgp neighbor" does not require additional memory
- Otherwise use Soft Reconfiguration
- Be nice to the Internet!

Principles of Addressing

Address Space

- Approach upstream ISP or consider RIR membership for address space
- Supply addressing plan when requested remember Internet is classless addresses assigned according to need not want
- Assign addresses to backbone and other network layers - remember scalability!
- Some examples follow...

Principles of Addressing

Separate customer & infrastructure address pools

Manageability

Different personnel manage infrastructure and assignments to customers

Scalability

Easier renumbering - customers are difficult, infrastructure is easy

Principles of Addressing

Further separate infrastructure In the IGP:

p2p addresses of backbone connections router loopback addresses Not in the IGP: RAS server address pools Virtual web and content hosting LANs Mail, DNS servers

Principles of Addressing

Customer networks

Carry in iBGP

Do not put in IGP – ever!

 Do not need to aggregate customer assigned address space

iBGP can carry in excess of 200,000 prefixes, no IGP is designed to do this

Management - Simple Network

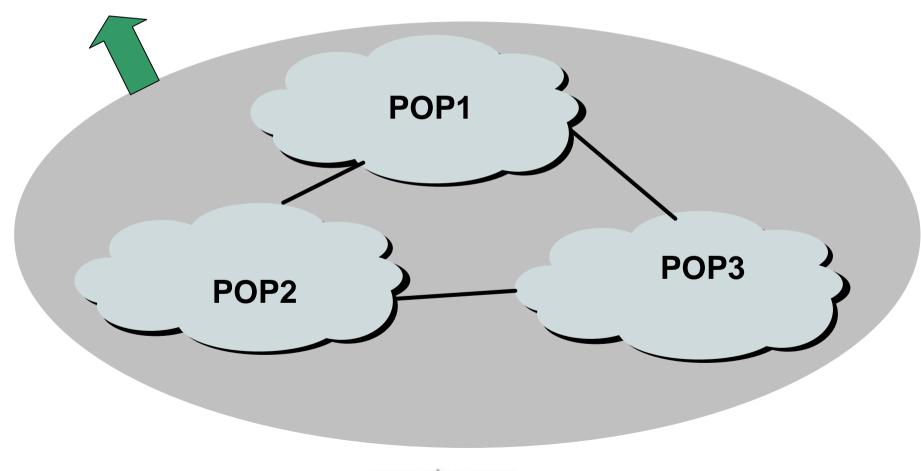
First allocation from APNIC

Infrastructure is known, customers are not

20% free is trigger for next request

Grow usage of blocks from edges Assign customers sequentially

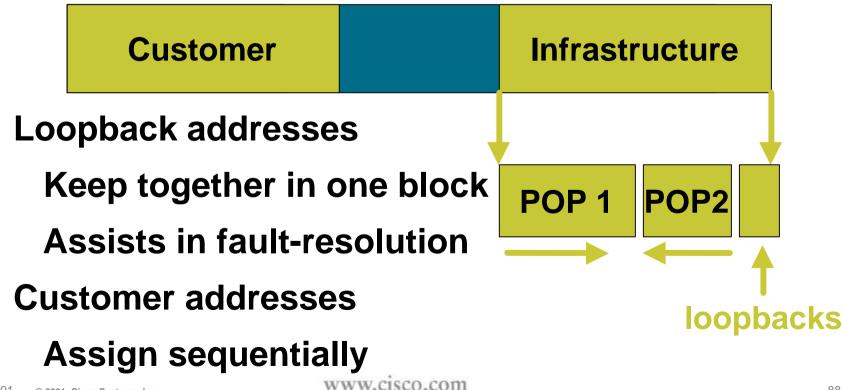
Management - Simple Network


If second allocation is contiguous

1st all	← 1st allocation → ← 2nd allocation →					
Customers	Infrastructure	Infrastructure	20%	Customers		

Reverse order of division of first block Maximise contiguous space for infrastructure Easier for debugging Customer networks can be discontiguous

Management - Many POPs


WAN link to single transit ISP

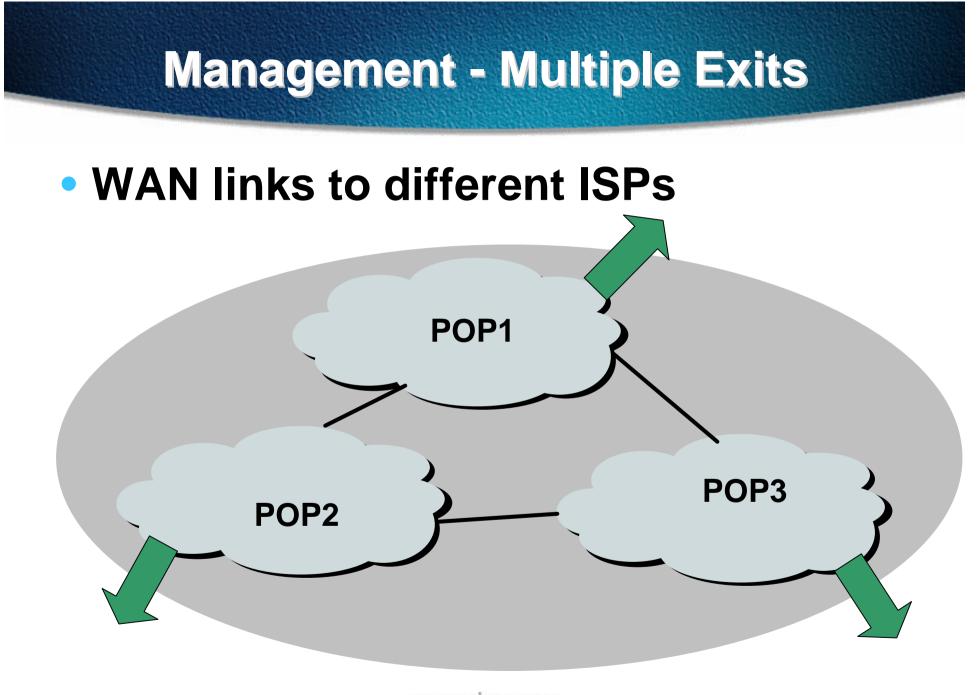
Management - Many POPs

POP sizes

Choose address pool for each POP according to need

Management - Many POPs

 /20 minimum allocation is not enough for all your POPs?


Deploy addresses on infrastructure first

Common mistake:

Reserving customer addresses on a per POP basis

 Do not constrain network plans due to lack of address space

Re-apply once address space has been used There is plenty of it!

Management - Multiple Exits

Create a 'national' infrastructure pool

National Infrastructure	20% free	POP1	POP2	POP3
----------------------------	-------------	------	------	------

Carry in IGP

E.g. loopbacks, p2p links, infrastructure connecting routers and hosts which are multiply connected

On a per POP basis

Consider separate memberships if requirement for each POP is very large from day one.

Routing Design for ISPs

Network Design

- Aim for simplicity, scalability and reliability
- Plan the network coverage
- Estimate growth over the next year
- Design the network

Network Coverage

- Where will you start and how?
- Where will it grow?
 One year is a long time in the Internet Future PoP sites
- How big will it grow?

Inter-site bandwidth availability

• Does it match the business plan?

Network Design

- Start as you mean to continue
- Design scalability from day one hierarchy separate functions
- Choose your IGP carefully scalability, standards knowledge and expertise

Designed in Redundancy

Design goal should be two of everything

Each site should have at least two backbone WAN connections

Consider two core routers for each backbone site

- Out of Band management network
- Test lab/network
- Documentation!

Deploying IGP

• Keep IGP small!

Smaller IGP, faster convergence in case of link problems

Use BGP for customer prefixes, dial pools, and other networks

- Use summarisation between areas of network hierarchy
- Use ip unnumbered where possible

External Connections

Don't need BGP from day one

apply for an AS and deploy BGP only when it is needed i.e. when multihoming

When deploying BGP

iBGP carries customer networks only

IGP carries network link information only

Do not distribute BGP routes into IGP and vice-versa

Routing Etiquette

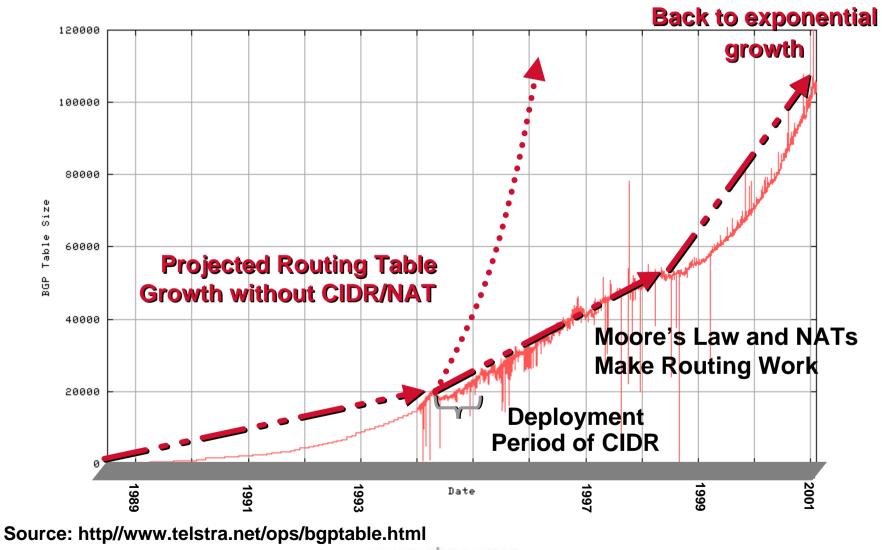
Being a good Internet citizen

"Problems on the Internet"

 Concern about rate of Internet growth http://www.isc.org/ds/

Large number of routes

http://www.employees.org/~tbates/cidr.plot.html


Routing instability

http://www.merit.edu/ipma/reports

- Difficulties diagnosing problems
- Quality of Service??

APRICOT 2001 © 2001, Cisco Systems, Inc.

Growth in BGP Route Table

Effects of CIDR on Internet

- Currently around 100000 routes
 Still too big
- If Internet were unaggregated Would be over 300000 networks (?) May have run out of IPv4 addresses What size of routers required? How stable would the Internet be?

CIDR - Examples

- Must announce network block assigned by RIR or upstream ISP
- Do not announce subnets of network block, or subnets of other ISPs' network blocks unless exceptional circumstances
- On Cisco routers use

redistribute static, or aggregate-address, or network/mask pair

CIDR – Examples

Redistribute static	router bgp 1849 network 194.216.0.0 redistribute static ! Must have a matching IGP route ip route 194.216.0.0 255.255.0.0 null0
Aggregate address	router bgp 1849 network 194.216.0.0 aggregate-address 194.216.0.0 255.255.0.0 ! More specific route must exist in BGP table
Network/mask pair	router bgp 1849 network 194.216.0.0 mask 255.255.0.0 ! Must have a matching IGP route ip route 194.216.0.0 255.255.0.0 null0

CIDR - Positive Efforts

- Most ISPs now filter all prefixes longer than /24
- Some ISPs pay attention to Tony Bates' CIDR report
- Some ISPs filter according to policy registered in the Internet Routing Registry
- No aggregation or bad aggregation could result in no connectivity

Aggregation

- Announce aggregate to rest of Internet
- Put it into Routing Registry (route object)
- Keep more specifics internal to network
 Use iBGP for carrying customer networks
 Use IGP for carrying backbone addresses
 Aggregate internally when possible

Aggregation - Good Example

Customer link goes down their /26 network becomes unreachable

/19 aggregate is still being announced no BGP hold down problems no BGP propagation delays no dampening by other ISPs

Aggregation - Good Example

- Customer link returns
- Their /26 network is visible again
- The whole Internet becomes visible immediately
- Quality of Service perception

Aggregation - Bad Example

Customer link goes down

Their /23 network becomes unreachable

Their ISP doesn't aggregate their /19 network block

/23 network withdrawal announced to peers

starts rippling through the Internet

added load on all Internet backbone routers as network is removed from routing table

Aggregation - Bad Example

Customer link returns

Their /23 network is now visible to their ISP

Their /23 network is re-advertised to peers

Starts rippling through Internet

Load on Internet backbone routers as network is reinserted into routing table

Some ISP's dampen flaps

Internet may take 10-20 min or longer to be visible

Quality of Service???

Aggregation - Summary

- Good example is what everyone should do!
 - Adds to Internet stability
 - **Reduces size of routing table**
 - **Reduces routing churn**
 - Improves Internet QoS for everyone
- Bad example is what many still do! Laziness? Lack of knowledge?

"The New Swamp" – Feb 2001

- Areas of poor aggregation
- 192/3 space contributes 78000 networks rest of Internet contributes 22000 networks

Block	Networks	Block	Networks	Block	Networks	Block	Networks
192/8	6602	200/8	2902	208/8	4987	217/8	400
193/8	2908	201/8	0	209/8	5392	24/8	1466
194/8	3122	202/8	4174	210/8	1445	<mark>61/8</mark>	230
195/8	1839	203/8	7280	211/8	882	<mark>62/</mark> 8	575
196/8	604	204/8	5023	212/8	2193	<mark>63/8</mark>	2833
197/8	0	205/8	3395	213/8	1049	64/8	3423
198/8	4853	206/8	4523	214/7	23	65/8	283
199/8	4462	207/8	4583	216/8	5391	66/8	470

"The New Swamp" – July 2000

 192/3 space contributes 69000 networks - rest of Internet contributes 16000 networks

Block	Networks	Block	Networks	Block	Networks	Block	Networks
192/8	6352	200/8	2436	208/8	4804	12/8	1047
193/8	2746	201/8	0	209/8	4755	24/8	1122
194/8	2963	202/8	3712	210/8	1375	<mark>61/8</mark>	80
195/8	1689	203/8	5494	211/8	532	<mark>62/</mark> 8	428
196/8	525	204/8	4694	212/8	1859	<mark>63/8</mark>	2198
197/8	0	205/8	3210	213/8	635	<mark>64/8</mark>	1439
198/8	4481	206/8	4206	214/7	14		
199/8	4084	207/8	3943	216/8	4177		

Original Swamp Cause

- Early growth of Internet
- Classful network allocation
- Small number of connected networks
- Lack of foresight by all

New Swamp Persists

Lazy or technically naïve ISPs

announcing 32 /24s rather than /19 aggregate block

announcing customer prefixes as they connect rather than aggregate block only

- Poorly thought out multihoming
- Technical solutions keep ahead of problem so far:

faster routers, more memory, CIDR

Solutions

- Don't route other ISP's address space unless in failure mode during multihoming
- Aggregate!
- Don't announce subprefixes of your assigned block
- Be prudent when announcing small prefixes out of former A and B space

Solutions

Encourage other ISPs to be good citizens don't route their bad citizenship

Multihoming

fragments address space

think carefully about set up and requirements

load balancing versus resilience

http://infopage.cw.net/Routing

Tony Bates' CIDR report

sent to nanog, apops and eof mail lists

Routing Report

sent to APOPS, ARIN rtma and RIPE routing-wg

- Regional Internet Registries
- Many ISPs still care
- Peer pressure
- YOU!

Renumbering - motivation

Same as motivation for aggregation holes are bad, using swamp space

First time Internet connection

legal address space, practical addressing scheme

New Provider

renumber into new provider's block

reduces fragmentation and improves routability

Renumbering - how to?

PIER - Procedures for Internet and Enterprise Renumbering

http://www.isi.edu/div7/pier/papers.html

Be aware of effect on essential services

e.g. DNS ttl requires lowering, router filters

- Use DHCP, secondary addressing
- Not difficult but needs planning

Route Flap Damping

Route Flap

technical description earlier

- Many ISPs now suppress route flaps at network borders
- Cisco BGP Case Study at

http://www.cisco.com/warp/public/459/16.html

Recommended parameters are at

http://www.ripe.net/docs/ripe-210.html

APRICOT 2001 © 2001, Cisco Systems, Inc.

Route Flap Damping - Caution

- Be aware of potential problems
- Unreachability could be due to dampening, not disconnection
- Border routers need more memory and CPU
- Train your staff!

Filtering Policies

• Filter announcements by peers

AS list, prefixes

Only accept what is listed in routing registry

avoids configuration errors and routing problems authorisation?

- Only announce what you list in routing registry
- Keep routing registry and filters up to date

"Documenting Special Use Addresses" - DSUA

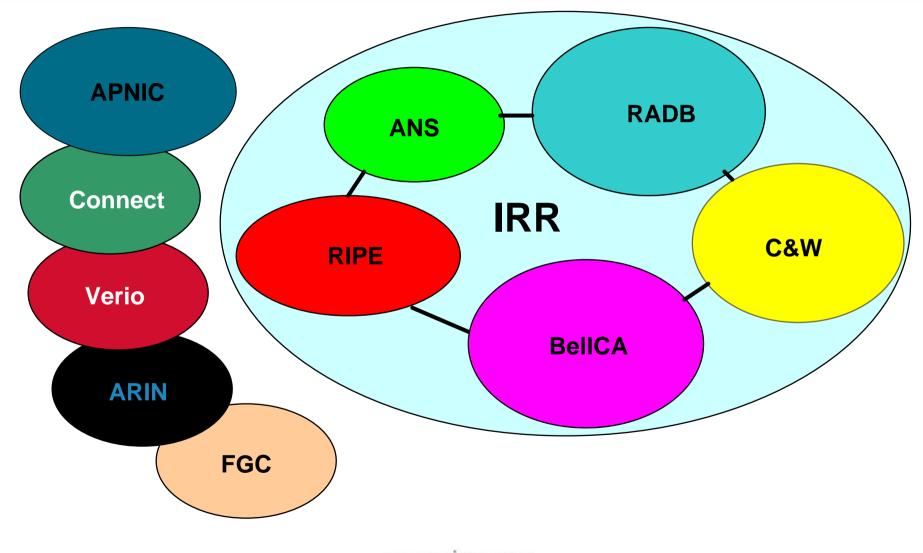
 Private and Special Use addresses must be blocked on all BGP peerings, in and out:

http://www.ietf.org/internet-drafts/draft-manning-dsua-06.txt

ip prefix-list private-sua deny 0.0.0.0/8 le 32

- ip prefix-list private-sua deny 10.0.0.0/8 le 32
- ip prefix-list private-sua deny 127.0.0.0/8 le 32
- ip prefix-list private-sua deny 169.254.0.0/16 le 32
- ip prefix-list private-sua deny 172.16.0.0/12 le 32
- ip prefix-list private-sua deny 192.0.2.0/24 le 32
- ip prefix-list private-sua deny 192.168.0.0/16 le 32
- ip prefix-list private-sua deny 224.0.0.0/3 le 32
- ip prefix-list private-sua deny 0.0.0.0/0 ge 25
- ip prefix-list private-sua permit 0.0.0.0/0 le 32

The Internet Routing Registry


Definition

- "A public authoritative distributed repository of routing information"
 - **Public databases**
 - **Distributed repository of information**
 - Have authoritative data
 - Vendor independent

Composition

- Routing Policy Details
- Routes and their aggregates
- Topology Linking AS's
- Network components such as routers
- Is separate from other information such as domains and networks

Entities of the IRR

Relationship Table

Registry	Routing Policy	Routes	Networks	Domains
APNIC	Yes	Soon	Yes	No
RIPE	Yes	Yes	Yes	No
RADB	Yes	Yes	No	No
C&W	Yes	Yes	No	No
ANS	Yes	Yes	No	No
BellCA	Yes	Yes	No	No
ARIN	Yes	Yes	Yes	No
"InterNIC"	No	No	No	Yes

Relationships

- 37 RRs around the world
- C&W, ANS and BellCA provider run RRs Other RRs run by Verio, FGC, Connect, etc...
- RIPE RR European providers
- ARIN RR launched 8 February 1999
- RADB Default RR for rest of world
- APNIC plans to be full member of IRR very soon.

Benefits of an IRR

- Operational Support
- Information
- Configuration
- Problem diagnosis
- Improved Service Quality
- Tools for consistency checking

Information

- Routing policy repository
- "Map of global routing topology"
- Routing policy between neighbouring AS's
- Device independent description of routing policy

Configuration

- Supports network filtering
- Configures routers and policies
- Revision control
- Sanity checking
- Simulation

Improved Quality of Service

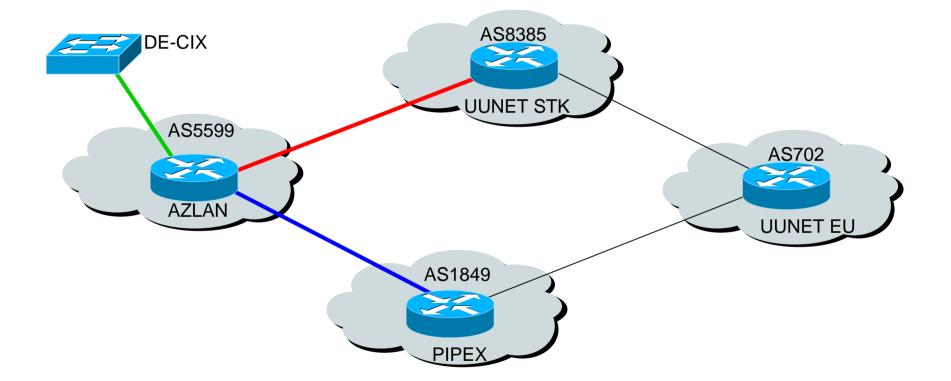
All this adds up to improved quality of service

Participation is essential!

RIPE-181

The language of the Internet Routing Registry

Key Objects and Syntax of RIPE-181


- Representation
- AS Object
- AS Macro
- Route Object
- Authorisation Maintainer Object

Representation

ASCII printable

- Attributes by tag:value lines
- Objects separated by empty lines
- RIPE-181 and RPSL

Real World Example!

AS-Object

aut-num:	AS5599
descr:	Azlan Scandinavia
descr:	Internet Business Unit
descr:	Glostrup NOC
as-in:	from AS1849 100 accept AS-PIPEXEURO
as-in:	from AS1835 100 accept AS1835
as-in:	from AS2863 100 accept AS2863
as-in:	from AS3292 100 accept AS-DKNET AS3292
as-in:	from AS3308 100 accept AS3308
as-in:	from AS5492 100 accept AS5492
as-in:	from AS5509 100 accept AS5509
as-in:	from AS6785 100 accept AS6785
as-in:	from AS6834 100 accept AS6834
as-in:	from AS8526 100 accept AS8526
as-in:	from AS8385 100 accept {146.188.0.0/16}

as-out:	to AS1849 announce AS5599
as-out:	to AS1835 announce AS5599
as-out:	to AS2863 announce AS5599
as-out:	to AS3292 announce AS5599
as-out:	to AS3308 announce AS5599
as-out:	to AS5492 announce AS5599
as-out:	to AS5509 announce AS5599
as-out:	to AS6785 announce AS5599
as-out:	to AS6834 announce AS5599
as-out:	to AS8526 announce AS5599
as-out:	to AS8385 announce AS5599
default:	AS8385 100
admin-c:	MW89-RIPE
tech-c:	KE30-RIPE
mnt-by:	AS5599-MNT
changed:	klaus@azlan.net 970207
changed:	klaus@azlan.net 971209
source:	RIPE

Connection to exchange point Connection transit provider Connection to backup provider

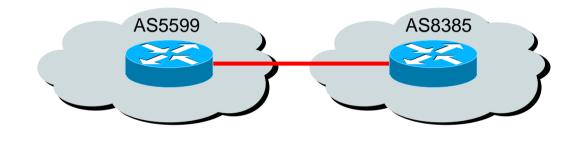
Syntax for AS Object

 Can represent policy using **Boolean expressions (AND, OR, NOT)** Keyword ANY - means "everything" **Communities and AS Macros Route lists - {prefixes}** Cost to indicate preference Attribute DEFAULT - accept 0.0.0.0

Fields in AS Object

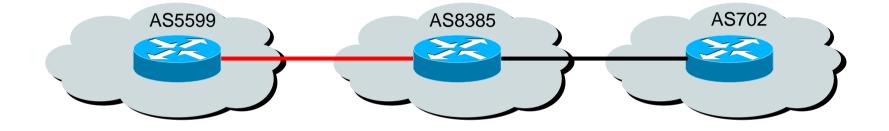
Mandatory Fields

aut-num, descr, admin-c, tech-c, mnt-by, changed, source, as-in, as-out


Optional Fields

as-name, interas-in, interas-out, asexclude, default, guardian, remarks, notify

IP Routing Policy


- Relationship between AS's
- What to announce to each neighbour
- What to accept from each neighbour
- Selection between multiple paths
- Preferred paths
- Use default route?

Basic Policy Example

aut-num:	AS5599
as-in:	from AS8385 100 accept {146.188.0.0/16}
as-out:	to AS8385 announce AS5599
aut-num:	AS8385
as-in:	from AS5599 100 accept AS5599
as-out:	to AS5599 announce {146.188.0.0/16}

Transit Policy Example

aut-num: AS8385

as-in: from AS5599 100 accept AS5599

as-out: to AS702 announce AS8385 AS5599 AS8473 AND NOT {0.0.0/0}

as-out: to AS5599 announce {146.188.0.0/16}

default: AS702 50 {146.188.0.0/16}

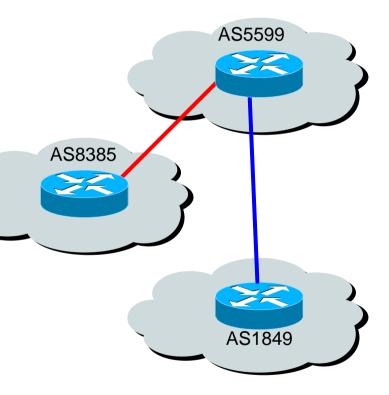
aut-num: AS702

as-in: from AS8385 100 accept AS8385 AS5599 AS8473

as-out: to AS8385 announce ANY

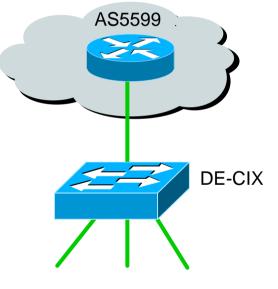
Multihoming Policy Example

aut-num: AS5599


as-in:from AS1849 100 accept AS-PIPEXEUROas-in:from AS8385 100 accept {146.188.0.0/16}as-out:to AS8385 announce AS5599as-out:to AS1849 announce AS5599

aut-num: AS1849

as-in: from AS5599 100 accept AS5599 as-out: to AS5599 announce AS-PIPEXEURO


aut-num: AS8385

as-out: to AS5599 announce {146.188.0.0/16} as-in: from AS5599 100 accept AS5599

Exchange Point Policy Example

aut-num:	AS5599
as-out:	to AS1835 announce AS5599
as-out:	to AS2863 announce AS5599
as-out:	to AS3292 announce AS5599
as-out:	to AS3308 announce AS5599
as-out:	to AS5492 announce AS5599
as-out:	to AS5509 announce AS5599
as-out:	to AS6785 announce AS5599
as-out:	to AS6834 announce AS5599
as-out:	to AS8526 announce AS5599

Other service providers

- Collection of AS's or other AS macros
- Describes membership of a set
- Contains no policy info
- Scales better
- Can differentiate between customer and peer routes

Fields in AS Macro

Mandatory Fields

as-macro, descr, as-list, tech-c, admin-c, mnt-by, changed, source

Optional Fields

guardian, remarks, notify

AS Macro

as-macro:	AS-UUNETSTK
descr:	UUNET customer routes in Stockholm
as-list:	AS-TAIDE
as-list:	AS-KOLUMBUS
as-list:	AS1759
as-list:	AS8385
as-list:	AS702
tech-c:	KCH251
admin-c:	ES199
remarks:	AS702 Stockholm routes are community tagged
notify:	intl-net-eng@uu.net
mnt-by:	UUNET-MNT
changed:	annel@uu.net 971113
source:	RIPE

Used in

aut-num:	AS702
as-out:	to AS1759 announce AS-UUNETSTK

www.cisco.com

Route Object

- Represents a route in the Internet
- Contains all membership information
- Only one origin possible
- Classless (should be aggregated)
- Can support holes and withdrawn

Fields in Route Object

Mandatory Fields

route, descr, origin, mnt-by, changed, source

Optional Fields

hole, withdrawn, comm-list, remarks, notify

• Example:

route:	195.129.0.0/19
descr:	UUNET-NET
origin:	AS702
remarks:	UUNET filter inbound on prefixes longer than /24
notify:	intl-net-eng@uu.net
mnt-by:	UUNET-MNT
changed:	annel@uu.net 970501
source:	RIPE

Route Object

route:	194.216.0.0/16
descr:	PIPEX-BLOCK194216
origin:	AS1849
hole:	194.216.59.0/24
remarks:	UUNET UK filter inbound on prefixes longer than /24
mnt-by:	AS1849-MNT
changed:	philip@uk.uu.net 19980107
source:	RIPE

stk-gw1>show ip bgp 194.216.0.0 255.255.0.0 longer-prefixes BGP table version is 53607058, local router ID is 195.242.36.254 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal Origin codes: i - IGP, e - EGP, ? - incomplete

Network	Next Hop	Metric LocPrf Weig	ht Path
*> 194.216.0.0/16	146.188.30.162	2 0	702 1849 i
*> 194.216.59.0	146.188.30.162	2 0	702 701 3491 5557 i

How to register and update information in the IRR

- Frequently used objects
- Update procedures
 - **Modifying Objects**
 - **Deleting Objects**
 - **Submitting Objects**
 - **Authorisation/Notification**
 - **Errors and Warnings**
 - **NIC** handles

Frequently Used Objects

- Person contact person
- Maintainer authorisation of objects
- Inetnum address assignment
- Aut-num autonomous systems
- AS-macro set of AS's
- Route announced routes

Unique Keys

- Uniquely identifies an object
- Updating object overwrites old entry need unique key
- Used in querying whois
- Web based full text searches available now, e.g.

http://whois.apnic.net/apnic-bin/whois.pl

Unique Keys

- Person name plus NIC handle
- Maintainer maintainer name
- Inetnum network number
- Aut-num AS number
- AS-macro AS macro name
- Route route value plus origin

Modifying an Object

Before

person:	Philip F. Smith
address:	UUNET UK
address:	Internet House
address:	332 Science Park
address:	Milton Road
address:	Cambridge CB4 4BZ
address:	England, UK
phone:	+44 1223 250100
fax-no:	+44 1223 250101
e-mail:	philip@uk.uu.net
nic-hdl:	PFS2-RIPE
notify:	philip@uk.uu.net
changed:	philip@uk.uu.net 19971202
source:	RIPE

Submitted and After

person: address:	Philip F. Smith Cisco Systems Australia
address:	Level 8, 80 Albert Street
address:	Brisbane 4000
address:	QLD
address:	Australia
phone:	+61 7 3238 8200
fax-no:	+61 7 3211 3889
e-mail:	pfs@cisco.com
e-mail:	philip@dial.pipex.com
nic-hdl:	PFS2-RIPE
notify:	philip@dial.pipex.com
changed:	pfs@cisco.com 19980209
source:	RIPE

- Unique keys must stay the same
- Remember to use current date
- NIC handle mandatory
 www.cisco.com

Deleting an Object

person:	Philip F. Smith
	UUNET UK
	332 Science Park
address:	Milton Road
address:	Cambridge
	England, UK
phone:	+44 1223 250100
fax-no:	+44 1223 250101
e-mail:	philip@uk.uu.net
nic-hdl:	PFS2-RIPE
notify:	philip@uk.uu.net
changed:	philip@uk.uu.net 19971202
source:	RIPE
delete:	philip@dial.pipex.com left company

- delete deletes object from database
- current object must be submitted exactly as is, only with extra delete line
- If there is a mnt-by line, need the password!

www.cisco.com

Submitting Objects

• Email Interface - eg APNIC

auto-dbm@apnic.net

Robot mail box

Send all database updates to this mailbox

Can use LONGACK and HELP in the subject line

apnic-dbm@apnic.net

human mailbox

questions on the database process

www.cisco.com

Authorisation/Notification

route: descr:	194.216.0.0/16 PIPEX-BLOCK194216
origin:	AS1849
hole:	194.216.59.0/24
remarks:	UUNET UK filter inbound on prefixes longer than /24
mnt-by:	AS1849-MNT
notify:	support@uk.uu.net
changed:	philip@uk.uu.net 19980107
source:	RIPE

- mnt-by the maintainer object
- notify who is notified of changes

Maintainer Object

- Who is authorised
- Authorisation Method

email-from and crypt-pw

Mandatory Fields

mntner, descr, admin-c, tech-c, upd-to, auth, mnt-by

Optional Fields

mnt-nfy, changed, notify, source

APRICOT 2001 © 2001, Cisco Systems, Inc.

Maintainer Object

Maintainer Object AS1849-MNT

mntner:	AS1849-MNT
descr:	AS 1849 Maintainer - PIPEX UK
admin-c:	PFS2-RIPE
tech-c:	PFS2-RIPE
upd-to:	philip@uk.uu.net
mnt-nfy:	netdev@uk.uu.net
auth:	CRYPT-PW fjOImdmwKsx
mnt-by:	AS1849-MNT
	philip@uk.uu.net 19980109
source:	RIPE

Object has to be registered manually

www.cisco.com

Authorisation/Notification

route:	194.216.0.0/16
descr:	PIPEX-BLOCK194216
origin:	AS1849
hole:	194.216.59.0/24
hole:	194.216.136.0/23
remarks:	UUNET UK filter inbound on prefixes longer than /24
mnt-by:	AS1849-MNT
passwd:	c4Ange5
notify:	support@uk.uu.net
changed:	philip@uk.uu.net 19980109
source:	RIPE

- New hole to be added.
- passwd field to allow change
- <support@uk.uu.net> will be notified of this change
- updated changed field

Warnings and Errors

Warnings

Object corrected then accepted

Notification of action taken sent in acknowledgement

Errors

Object not corrected and not accepted Diagnostics in acknowledgement

Syntax checking is very strict

NIC Handles

mntner: descr: admin-c: tech-c: upd-to: mnt-nfy: auth: mnt-by: changed: source:	AS1849-MNT AS 1849 Maintainer - PIPEX UK PFS2-RIPE philip@uk.uu.net netdev@uk.uu.net CRYPT-PW fjOImdmwKsx AS1849-MNT philip@uk.uu.net 19980109 RIPE	
--	---	--

- **PFS2-RIPE** is the NIC Handle of the person
- Only way of avoiding ambiguity in person objects
- Mandatory
- Format: <initials><number>- <regional registry>
- Local differences for obtaining NIC Handles.

The new language of the Internet Routing Registry

www.cisco.com

What is **RPSL**

- RPSL is the development of RIPE-181
 RFC2622 Routing Policy Specification Language
- Allows more complex policy specification Looks very similar to RIPE-181 (but not backward compatible)
- All participants in the IRR have agreed to migrate to RPSL

Many already have

Training materials at

http://www.isi.edu/ra/rps/training

RPSL Database Software

• **RPSL database software available:**

IRRd (Merit) – <u>http://www.irrd.net/</u>

In fully deployment

RIPE DB v3.0 – <u>http://www.ripe.net/</u>

In beta test

RIPE DB 3.0.0b2 with ISI RPSL extensions

http://www.kessens.com/~david/software/

BIRD v1.1beta – <u>ftp://ftp.isi.edu/ra/BIRD</u>

Status unknown

Transition

• RADB and ARIN

RPSL using MERIT IRRd software

RIPE NCC

In transition now

RPSL using RIPE DB v3.0 software

http://www.ripe.net/ripencc/pub-services/db/rpsl/

• APNIC

Planning IRR pilot using RIPE DB v3.0 software

Conversion Tool

http://www.isi.edu/ra/rps/transition/

Welcome to the RPSL Transition Page

This page presents the latest information on the transition from RIPE-181 to the new Routing Policy Specification Language. The information will be updated frequently; visit often to stay up-to-date.

•Query a mirrored copy of the Internet Routing Registry

Query a mirrored copy of the IRR that has been converted to RPSL

Convert RIPE-181 objects to RPSL / Perform RPSL syntax checks

Access ISI's RPSL-capable database server

• Download the RIPE-to-RPSL converter tool

Transition Plan

<u>RPSL Transition Presentation to NANOG, October 1997</u>

Aut-Num Class Example

RPSL		RIPE-181	
aut-num:	AS5599	aut-num:	AS5599
as-name:	UNSPECIFIED		
descr:	Azlan Scandinavia	descr:	Azlan Scandinavia
descr:	Internet Business Unit	descr:	Internet Business Unit
descr:	Glostrup NOC	descr:	
import:	from AS1849	as-in:	from AS1849 100 accept AS-PIPEXEURO
	action pref = 100;		
	accept AS-PIPEXEURO		
<snip></snip>		<snip></snip>	
export:	to AS1849	as-out:	to AS1849 announce AS5599
	announce AS5599		
<snip></snip>		<snip></snip>	
default:	to AS8385	default:	AS8385 100
	action pref = 100;		
	networks ANY		
admin-c:	MW89-RIPE	admin-c:	
	KE30-RIPE	tech-c:	KE30-RIPE
	This data is automatically converted		
remarks:	from the RIPE181 registry (19980106)		
notify:	as-guardian@azlan.net	notify:	as-guardian@azlan.net
	AS5599-MNT	mnt-by:	AS5599-MNT
changed:	klaus@azlan.net 19970207	changed:	klaus@azlan.net 19970207
source:	RIPE	source:	RIPE

Route Class Example

	0	194.216.0.0/16 PIPEX-BLOCK194216 AS1849 194.216.59.0/24
RIPE-181		UUNET UK filter inbound on prefixes longer than /24
	mnt-by:	AS1849-MNT
	Ŭ	philip@uk.uu.net 19980107 RIPF
	Source.	

RPSL	route: descr: origin: hole: remarks: mnt-by: changed: source:	194.216.0.0/16 PIPEX-BLOCK194216 AS1849 194.216.59.0/24 UUNET UK filter inbound on prefixes longer than /24 AS1849-MNT philip@uk.uu.net 19980107 RIPE
------	--	--

AS-Set Class Example

RIPE-181

RPSL	as-set: descr: members: remarks: remarks: tech-c: admin-c: notify: mnt-by: changed: changed:	AS-UUNETSTK UUnet customer routes in Stockholm AS-TAIDE, AS-KOLUMBUS, AS702, AS1759, AS8385 AS702 Stockholm routes are community tagged This data is automatically converted from the RIPE181 registry (19980127) KCH ES199 intl-net-eng@uu.net UUNET-MNT annel@uk.uu.net 971113 davidk@ISI.EDU 19980127
	changed: source:	davidk@ISI.EDU 19980127 RIPE

Real World Example

\$ whois -h whois.connect.com.au AS4648

% RIPEdb(3.0.0b1) with ISI/Qwest RPSL extensions

- aut-num: AS4648
- as-name: NZIX-2

descr: Telecom New Zealand Limited

import: from AS2764

accept (<^AS2764+ AS2764:AS-CUSTOMERS*\$>

OR <^AS2764+ AS3409+ AS2764:AS-CUSTOMERS:AS3409+\$>
OR <^AS2764+ AS4736+ AS2764:AS-CUSTOMERS:AS4736+\$>
OR <^AS2764+ AS4802+ AS2764:AS-CUSTOMERS:AS4802+\$>
OR <^AS2764+ AS4805+ AS2764:AS-CUSTOMERS:AS4805+\$>
OR <^AS2764+ AS7469+ AS2764:AS-CUSTOMERS:AS7469+\$>
OR <^AS2764+ AS7489+ AS2764:AS-CUSTOMERS:AS7489+\$>
OR <^AS2764+ AS743+ AS2764:AS-CUSTOMERS:AS743+\$>

..next slide

Real World Example

OR <^AS2764+ AS7586+ AS2764:AS-CUSTOMERS:AS7586+\$>
OR <^AS2764+ AS7606+ AS2764:AS-CUSTOMERS:AS7606+\$>
OR <^AS2764+ AS7637+ AS2764:AS-CUSTOMERS:AS7637+\$>
OR <^AS2764+ AS7648+ AS2764:AS-CUSTOMERS:AS7648+\$>
OR <^AS2764+ AS7716+ AS2764:AS-CUSTOMERS:AS7716+\$>
OR <^AS2764+ AS9300+ AS2764:AS-CUSTOMERS:AS9300+\$>
OR <^AS2764+ AS9328+ AS2764:AS-CUSTOMERS:AS9328+\$>)

export: to AS2764

announce (<^AS4648+ AS4648:AS-CUSTOMERS*\$>

OR <^AS4648+ AS9325+ AS4648:AS-CUSTOMERS:AS9325+\$>

OR <^AS4648+ AS9941+ AS4648:AS-CUSTOMERS:AS9941+\$>)

- admin-c: CC89
- tech-c: MP151
- mnt-by: CONNECT-AU
- changed: mrp@connect.com.au 20000928
- source: CCAIR

Tools and Resources

How can I use the IRR?

www.cisco.com

What tools and resources?

RAToolset

www.isi.edu/ra/RAToolSet

RIPE whois

ftp.ripe.net/ripe/tools

Traceroute sites

www.traceroute.org

Looking Glasses

http://www.traceroute.org/#Looking Glass

Two versions

3.5.8 supports RIPE-181

4.6.3 supports RPSL

- Runs on most Unix platforms
- Requires recent g++, tcl and tk
- Excellent for housekeeping, debugging and configuration

RAToolSet Tools

RTconfig

Generate router configurations for Cisco, Bay, GateD and Juniper

AOE - aut-num object editor

update aut-num, as-macro objects

• ROE - route-object editor

update route-object

CIDRadvisor

advice on CIDRisation

Route object editor used to:

check for consistency of route objects in IRRs

synchronise route object entries in different IRRs

detect missing or unwanted route objects

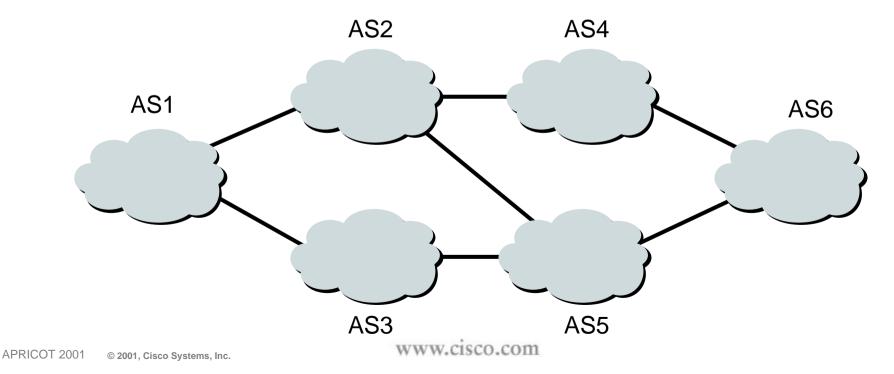
ROE example

						roe			7
ile <u>S</u> how S	election	<u>C</u> onfigure							
8.22.164.0/24					MCI:AS226				1
8.32.0.0/16					MCI:AS226				
98,32,0,0/23					MCI:AS226	RADB:AS226			
198,32,0,0/24					MCI:AS226				
198,32,1,0/24					MCI:AS226				
98,32,2,0/24					MCI:AS226				
98.32.4.0/23					MCI:AS226				
198.32.4.0/24					MCI:AS226				
98.32.6.0/24					MCI:AS226				
98.32.146.0/23					MCI:AS226				
MCI AS226	RADB	AS226							
oute: escr:		.98.32. JETBLK-							
riqin:		AS226	nA						
dvisory:		15690 1	:3561 2	2:1740					
otify:		Prue@is							
nt-by:	I	IN-MAIN	T-MCI						
hanged:	E	Prue@is	i.edu 🤅	950420					
ource:	Μ	ICI							
						-			
1						A			
1									
Add Template	Dele	ete Templat	te Upd	ate Templat	e	Schedule	Cancel		Update IRF
								1	2

AS Object editor used to:

generate AS objects and policies as-in and as-out

check policies listed in AS object on the IRRs


check policies according to BGP dump

AOE example

	aoe (AS226 from IRR)	a 🗆
<u>F</u> ile <u>C</u> onfigure		
AS111 (IRR) AS222 (IRR) AS333 (IRR) AS444 (IRR)	Astronomic aut-num: AS226 as-name: ASN-LOS-NETTOS descr: USC/Information Sciences Institute, regional network, Los Net as-in: from AS111 10 accept ANY as-in: from AS222 10 accept AS222 as-in: from AS333 10 accept AS333 as-in: from AS444 10 accept AS444 as-out: to AS111 announce AS226 as-out: to AS222 announce AS226 as-out: to AS333 announce ANY	
	Edit AS111	Update IR
	AS226 from IRR	Policy:
	as-in: from AS111 10 accept ANY as-out: to AS111 announce AS226	Impor
		Template
	AS111	Append
	as-in: from AS226 10 accept AS226	Replace
	as-out: to AS226 announce ANY	
		aoe
Delete Peer Add	Peer 5	
About ace and RATo	lSet	

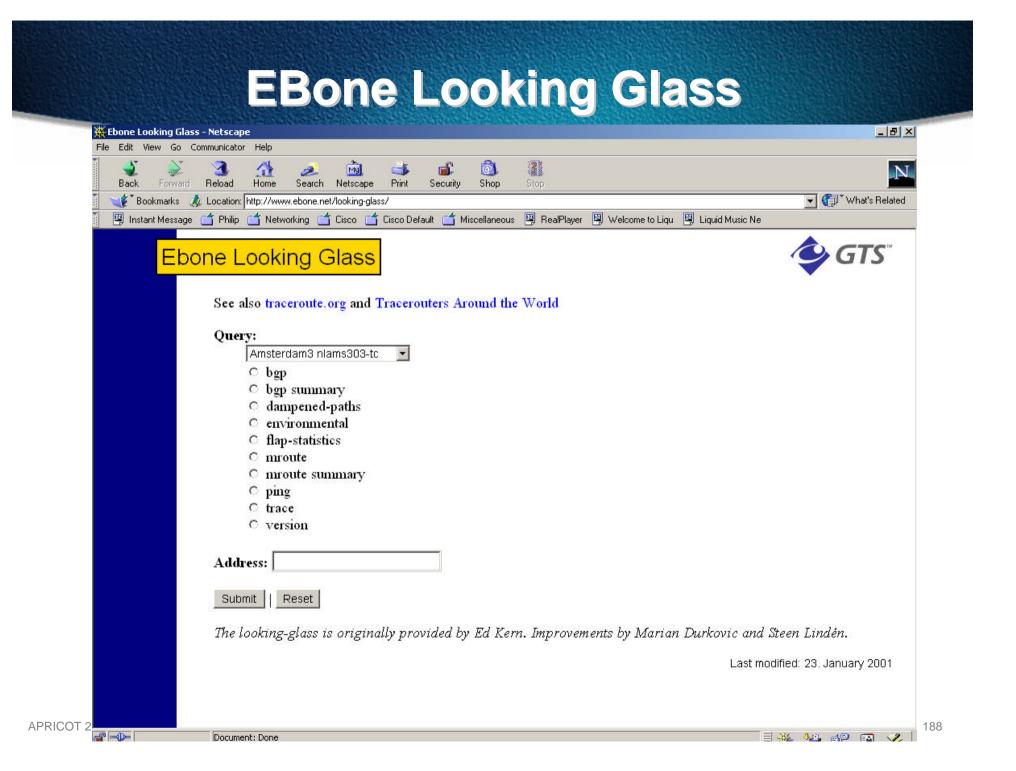
PRtraceroute

- PRIDE modified traceroute which includes AS information and a comparison between the real route and the route according to the IRR.
- Cisco IOS trace command refers to BGP table

PRtraceroute Example

% prtraceroute -lv collegepk-cr9.bbnplanet.net traceroute with AS and policy additions [Jan 13 20:21:19 UTC]

> from AS109 lovefm.cisco.com (171.68.228.35) AS86 collegepk-cr9.bbnplanet.net (192.239.103.9) to


1	AS109	al.cisco.com	171.68.228.	3 [I] 4 1 1 ms
2	AS109	acorn.cisco.com	171.68.0.13	4 [I] 2 1 1 ms
3	AS109	gaza-gw2.cisco.com	171.68.0.91	[I] 2 1 1 ms
4	AS109	sj-wall-2.cisco.com	198.92.1.13	8 [I] 3 3 2 ms
5	AS109	barrnet-gw.cisco.com	192.31.7.37	[I] 4 3 2 ms
6	AS200	paloalto-cisco.bbnplanet.net	131.119.26.	9 [?] 4 4 3 ms
7	AS200	paloalto-br1.bbnplanet.net	131.119.0.1	.93 [I] 7 8 7 ms
8	AS1	chicago2-br1.bbnplanet.net	4.0.1.2	[E1] 58 59 58 ms
9	AS1	collegepk-br1.bbnplanet.net	4.0.1.6	[I] 82 73 75 ms
10	AS86	collegepk-cr9.bbnplanet.net	128.167.252	2.9 [E1] 86 81 ms
AS	Path fo	ollowed: AS109 AS200 AS1 AS86	ERROR NH ASx	hop should not have been taken possible NEXT_HOP followed
AS109 = Cisco Systems			I	intra AS hop
AS	200 = B	BN Planet Western Region	En	nth choice inter AS hop
	AS1 = B	BN Planet backbone	Dn	nth choice default hop
Α	S86 = S	URAnet Northern AS	С	connected hop
			?	No information in IRR
PRICOT	2001 © 200	01, Cisco Systems, Inc. WWW.Cl	Isco.com	185

RIPE whois client

- Runs on most (UNIX) platforms
- Easy to install
- Can use to query all other IRR's
- Expanded whois functionality
- Good for housekeeping, debugging, operations
- Was used for all the examples in this tutorial
- **RECOMMENDED!**

Web based whois

🔮 🐳 🧟 🏦 🚈 🚵 💰 🛍 Back Forward Reload Home Search Netscape Print Security	Shop Stop		Λ
Bookmarks 🙏 Location: http://www.apnic.net/apnic-bin/whois2.pl			what's Related
🛛 🖳 Instant Message 🥣 Philip 🖆 Networking 🗂 Cisco 🗂 Cisco Default 📑 Misc	ellaneous 関 RealPlayer 🖳 Welcome to L	.iqu 🖳 Liquid Music Ne	
Ô	Asia Paci	fic Network Information Centre	6
APNIC Service	<u>s Membership Information Docur</u>	nents Training Contact Search	
Search the APN	IC Whois database		
Show all results	Search	VIIIII	
Advanced Whois search options	Brief descriptions below		
-T ⑦ Type of object: all types 🔽	🕂 🖉 🗆 Fast raw output	Level of specificity:	
-s 🕐 Source database: all sources 🔻	🖕 🕐 🗖 No recursive	○ <u>-L</u> ② Less specific ○ -m ② 1st level more	
<u>-s</u> ② Source database: all sources <u>·</u>	Iookup	specific	
-i 🖉 Inverse lookup: none 💌	<u>-S</u>	ି <u>-M</u> ଡ All more specific	
	-R ^⑦ □ APNIC objects only		
[About the da	tabase] Reset		
Commor	whois options		

Open Issues

Why am I not using the IRR?

www.cisco.com

Open Issues

• Why isn't the IRR used more today? **Ignorance**? **Education**? **Security fears? No local routing registry?** • What tools are missing?

Tool Availability

 Should software be available as a commercial package?

Better bundled/supported/debugged?

Better integration/training?

 Most tools are freely available public efforts for the good of the "community"

Routing Registries

Belief that the Internet works without the IRR.

It does, still...

Many ISPs rely on the data kept in the registry

Many ISPs use the IRR to help operate their businesses

Subset of tools available are being used on a daily basis

Awareness & Training

- Is there enough awareness about Internet routability?
- Is there enough training on the promotion of routability
- Headcount requirement
 - depends on organisation
 - too easy and cheaper to be irresponsible

Ways forward

- Routing Registry enhancements RPSL matches most of BGP's policy capabilities today
- Feedback on tool enhancements
- Feedback to vendors on equipment configuration enhancements
- More training, more education, more feedback!

Summary

Summary

- ISP networks and terminology
- The application of IGPs and BGP in an Internet network
- Shown tools which help diagnose and solve routing problems more easily
- Application of routing registries

Summary

- Made you more aware of the issues facing the Internet today
- Showed you how to make a positive contribution to the functioning of the Internet
- Promoted Routability!

• Any Questions?

Please fill in evaluation form

This presentation will be available at

http://www.cisco.com/public/cons/isp/documents

My contact info: Philip Smith <pfs@cisco.com>

Useful URL's & Reading

1. CIDR

ftp://ftp.isi.edu/in-notes/rfc{1517,1518,1519}.txt http://www.ibm.net.il/~hank/cidr.html ftp://ftp.uninett.no/pub/misc/eidnes-cidr.ps.Z Network addressing when using CIDR

2. AS numbers

ftp://ftp.isi.edu/in-notes/rfc1930.txt

Guidelines for creation, selection, and registration of an AS

3. Address Allocation and Private Internets

ftp://ftp.isi.edu/in-notes/rfc1918.txt

4. BGP Dampening

http://www.cisco.com/warp/public/459/16.html ftp://ftp.ripe.net/ripe/docs/ripe-210.txt

European recommendations for route flap dampening

ftp://engr.ans.net/pub/slides/nanog/feb-1995/route-dampen.ps

5. Routing Discussion

http://www.ripe.net/wg/routing/index.html

Useful URL's & Reading

6. Traceroute server repository

http://www.boardwatch.com/isp/trace.htm http://nitrous.digex.net Internet Looking Glass

7. ISP Tips

http://www.amazing.com/internet/faq.html http://www.cisco.com/public/cons/isp/

8. BGP Table

http://www.telstra.net/ops/bgptable.html http://www.employees.org/~tbates/cidr.hist.plot.html http://www.merit.edu/ipma/reports http://www.apnic.net/stats/bgp

9. Route server views

http://www.caida.org

10.NANOG archive

http://www.merit.edu/mail.archives/html/nanog/maillist.htm

IRR Reading List

1. RFC1786 "Representation of IP Routing Policies in a Routing Registry" ftp://ftp.isi.edu/in-notes/rfc1786.txt

2. RATools and RSPL

ftp://ftp.apnic.net/ietf/rfc/rfc2280.txt Tools http://www.isi.edu/ra/* Mailing List <ratoolset@isi.edu>

3. PRIDE

Slides ftp://ftp.ripe.net/pride/docs/course-slides Guide ftp://ftp.ripe.net/pride/docs/guide-2.0txt.{ps}.tar.gz Tools ftp://ftp.ripe.net/pride/tools/*

4. IRR authorisation/notification

ftp://ftp.ripe.net/ripe/docs/ripe-120.txt

5. RADB pointers

http://www.ra.net

http://www.ra.net/.faq.htm

6. ISP run RR User documents

http://infopage.cw.net/Routing